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1. Introduction

An important feature of (static) extremal black hole solutions is that scalar fields (often

called moduli) tend to fixed values at the horizon determined by the black hole charges.

These values are independent of the asymptotic values of the fields at spatial infinity. This

fixed point behaviour is encoded in so-called attractor equations, which, in the generic case,

can be understood from the field equations associated with the reduced action taken at a

Killing horizon. The attractor equations are a crucial ingredient in comparing the macro-

scopic (or field-theoretic) black hole entropy with the microscopic (or statistical) entropy

of a corresponding brane configuration. This and corresponding aspects of the relation

between classical and quantum black holes have been studied extensively in the context of

N = 2 supergravity in four space-time dimensions. Especially for BPS black holes many

important results have been obtained. The inclusion of higher-derivative interactions into

the effective actions often played a crucial role. For BPS black holes the attractor equations

can be understood entirely from supersymmetry enhancement at the horizon. Obviously

they must correspond to special solutions of the more general attractor equations based on

a reduced action.

In this paper we study the relation between the more general attractor equations and

the BPS attractor equations for static extremal black holes in four space-time dimensions.

This can be done conveniently in terms of corresponding entropy functions that form the

basis of an underlying variational principle. In the presence of higher-derivative actions it

is very difficult to explicitly construct black hole solutions. However, by concentrating on

the near-horizon region one can usually determine the fixed-point values directly without

considering the interpolation between the horizon and spatial infinity. This approach was
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first applied to BPS black holes without higher-derivative interactions in [1 – 8] and then

with higher-derivative interactions in [9 – 12]. It was also applied to non-BPS extremal black

holes in [5, 6, 13 – 30]. In the presence of higher-derivative interactions full interpolating

solutions have been studied for BPS black holes in [11, 31 – 33].

For N = 2 BPS black holes with higher-derivative interactions the attractor equations

follow from classifying possible solutions with full supersymmetry [11]. As it turns out

supersymmetry determines the near-horizon geometry (and thus the horizon area), the

values of the moduli fields in terms of the charges and the value of the entropy as defined

by the Noether charge definition of Wald [34]. For more general extremal black holes the

analysis is more subtle and makes use of an action principle [13]. When dealing with

spherically symmetric solutions, one can integrate out the spherical degrees of freedom and

obtain a reduced action for a 1 + 1 dimensional field theory. This action still describes the

full black hole solutions. Under certain conditions the fixed values at the horizon can be

obtained by considering the reduced action in a 1 + 1 dimensional near-horizon geometry

which has an enhanced symmetry (usually one has AdS2). Near the horizon other fields

respect this symmetry as well (when the enhanced symmetry is maximal the fields are all

covariantly constant), so that the two-dimensional integral in the reduced action can be

dropped and one obtains a potential depending on variables that specify the values of the

fields at the Killing horizon. Actually the number of relevant variables can often be reduced

already at an earlier stage by imposing some of the equations of motion at the level of the

interpolating solution, but this represents no problem of principle.

This paper is organized as follows. In section 2 we consider the entropy function,

both in the reduced action approach of [13] and in the context of BPS black holes (the

latter for the case of N = 2 supergravity based on [7, 12]). We discuss those features that

are relevant for electric/magnetic duality. In section 3 we evaluate the entropy function

based on the action of a general N = 2 supergravity theory following [25], and we relate

it to the BPS entropy function. We display the associated variational equations with and

without higher-curvature interactions. For BPS black holes both entropy functions can be

used in the definition of a corresponding duality invariant OSV-type integral and lead to

identical results at the semi- classical level. In section 4 we briefly comment on corrections

to the entropy functions due to other higher-derivative interactions associated with matter

multiplets. We also discuss the modification of the entropy functions by non-holomorphic

corrections.

2. Entropy functions

In this section we will briefly consider the entropy function derived from the action evalu-

ated in a near-horizon geometry for some rather general theory and the entropy function

that pertains to static BPS black holes in N = 2 supergravity in four space-time dimen-

sions.

2.1 The reduced action and the entropy function

When considering spherically symmetric solutions one may integrate out the spherical de-
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grees of freedom. This leads to a reduced action, which we consider here for a general

system of abelian vector gauge fields, scalar and matter fields coupled to gravity. The ge-

ometry is then restricted to the product of the sphere S2 and a 1+1 dimensional space-time,

and the dependence of the fields on the S2 coordinates θ and ϕ is fixed by symmetry argu-

ments. For the moment we will not make any assumption regarding the dependence on the

remaining two cooordinates r and t. Consequently we write the general field configuration

consistent with the various isometries as

ds2
(4) = gµνdxµdxν = ds2

(2) + v2

(

dθ2 + sin2 θ dϕ2
)

,

Frt
I = eI , Fθϕ

I =
pI

4π
sin θ . (2.1)

Here the Fµν
I denote the field strengths associated with a number of abelian gauge fields.

The θ-dependence of Fθϕ
I is fixed by rotational invariance and the pI denote the magnetic

charges. The latter are constant by virtue of the Bianchi identity, but all other fields

are still functions of r and t. As we shall see in a moment the fields eI are dual to the

electric charges. The radius of S2 is defined by the field v2. The line element of the 1 + 1

dimensional space-time will be expressed in terms of the two-dimensional metric ḡij , whose

determinant will be related to a field v1 according to,

v1 =
√

|ḡ| . (2.2)

Eventually ḡij will be taken proportional to an AdS2 metric,

ds2
(2) = ḡij dxidxj = v1

(

− r2 dt2 +
dr2

r2

)

. (2.3)

In addition to the fields eI , v1 and v2 there may be a number of other fields which for the

moment we denote collectively by uα.

As is well known theories based on abelian vector fields are subject to electric/magnetic

duality, because their equations of motion expressed in terms of the dual field strengths,1

GµνI =
√

|g| εµνρσ
∂L

∂Fρσ
I

, (2.4)

take the same form as the Bianchi identities for the field strengths Fµν
I . Adopting the

conventions where xµ = (t, r, θ, ϕ) and εtrθϕ = 1, and the signature of the space-time metric

equals (−,+,+,+) as is obvious from (2.3), it follows that, in the background (2.1),

Gθϕ I =−v1v2 sin θ
∂L

∂Frt
I

= −v1v2 sin θ
∂L
∂eI

,

Grt I =−v1v2 sin θ
∂L

∂Fθϕ
I

= −4π v1v2
∂L
∂pI

. (2.5)

1Here and henceforth we assume that the Lagrangian depends on the abelian field strengths but not on

their space-time derivatives. This restriction is not an essential one. In case that the Lagrangian contains

derivatives of field strengths, one replaces the derivative of the Lagrangian in (2.4) by the corresponding

functional derivative of the action. We also assume that the gauge fields appear exclusively through their

field strengths.
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These two tensors can be written as qI sin θ/(4π) and fI . The quantities qI and fI are

conjugate to pI and eI , respectively, and can be written as

qI(e, p, v, u) = −4π v1v2
∂L
∂eI

,

fI(e, p, v, u) = −4π v1v2
∂L
∂pI

. (2.6)

They depend on the constants pI and on the fields eI , v1,2 and uα, and possibly their

t and r derivatives, but no longer on the S2 coordinates θ and ϕ. Upon imposing the

field equations it follows that the qI are constant and correspond to the electric charges.

Obviously our aim will be to obtain a description in terms of the charges pI and qI , rather

than in terms of the pI and eI .

Electric/magnetic duality transformations are induced by rotating the tensors Fµν
I and

Gµν I by a constant transformation, so that the new linear combinations are all subject to

Bianchi identities. Half of them are then selected as the new field strengths defined in terms

of new gauge fields, while the Bianchi identities on the remaining linear combinations are

regarded as field equations belonging to a new Lagrangian defined in terms of the new field

strengths. In order that this dualization can be effected the rotation betweeen the tensors

must belong to Sp(2n+2; R), where n+1 denotes the number of independent gauge fields.

Hence this leads to new quantities (p̃I , q̃I) and (ẽI , f̃I), where

p̃I = U I
J pJ + ZIJ qJ ,

q̃I = VI
J qJ + WIJ pJ , (2.7)

and likewise for (eI , fI). Here U I
J , VI

J , WIJ and ZIJ are constant real (n + 1) × (n + 1)

submatrices subject to

UTV − WTZ = V TU − ZTW = ,

UTW = WTU , ZTV = V TZ , (2.8)

so that the full matrix belongs to Sp(2n + 2; R) [35]. Since the charges are not continuous

but will take values in an integer-valued lattice, this group should eventually be restricted

to an appropriate arithmetic subgroup.

Subsequently we define the reduced Lagrangian by the integral of the full Lagrangian

over S2,

F(e, p, v, u) =

∫

dθ dϕ
√

|g| L . (2.9)

We note that the definition of the conjugate quantities qI and fI takes the form,

qI = −∂F
∂eI

, fI = − ∂F
∂pI

. (2.10)

It is known that a Lagrangian does not transform as a function under electric/magnetic

dualities. Instead we have [36],

F̃(ẽ, p̃, v, u) +
1

2
[ẽI q̃I + f̃I p̃

I ] = F(e, p, v, u) +
1

2
[eIqI + fIp

I ] . (2.11)
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so that the linear combination F(e, p, v, u) + 1
2 [eIqI + fIp

I ] transforms as a function. Fur-

thermore one may verify that first-order partial derivatives (say with respect to u or v, or

derivatives thereof) of F(e, p, v, u) that leave eI and pI fixed, transform also as a function.

This result implies that the field equations associated with fields other than the electromag-

netic ones transform covariantly and retain their form when changing the electric/magnetic

duality frame.

It is easy to see that the combination eIqI − fIp
I transforms as a function as well,

so that we may construct a modification of (2.9) that no longer involves the fI and that

transforms as a function under electric/magnetic duality,

E(q, p, v, u) = −F(e, p, v, u) − eIqI , (2.12)

which takes the form of a Legendre transform in view of the first equation (2.10). In this

way we obtain a function of electric and magnetic charges. Therefore it transforms under

electric/magnetic duality according to Ẽ(q̃, p̃, v, u) = E(q, p, v, u). Furthermore the field

equations imply that the qI are constant and that the action,
∫

dtdr E , is stationary under

variations of the fields v and u, while keeping the pI and qI fixed. This is to be expected as

E is in fact the analogue of the Hamiltonian density associated with the reduced Lagrangian

density (2.9), at least as far as the vector fields are concerned.

In the near-horizon background (2.3), assuming fields that are invariant under the

AdS2 isometries, the generally covariant derivatives of the fields vanish and the equations

of motion imply that the constant values of the fields v1,2 and uα are determined by

demanding E to be stationary under variations of v and u,

∂E
∂v

=
∂E
∂u

= 0 , qI = constant . (2.13)

The function 2π E(q, p, v, u) coincides with the entropy function proposed by Sen [13]. The

first two equations of (2.13) are then interpreted as the attractor equations and the Wald

entropy is directly proportional to the value of E at the stationary point,

Smacro(p, q) ∝ E
∣

∣

∣

attractor
. (2.14)

The normalization conventions used for the Lagrangian affect E and the definition of the

charges and of Planck’s constant. This has to be taken into account when determining

the proportionality factor in (2.14), and we do so in (3.16). In the presentation above we

followed the approach of [13], but similar approaches can be found in, for instance, [5, 6, 14].

Note that the entropy function does not necessarily depend on all fields at the horizon.

The values of some of the fields will then be left unconstrained, but those will not appear

in the expression for the Wald entropy.

The above derivation of the entropy function applies to any gauge and general co-

ordinate invariant Lagrangian, and, in particular, also to Lagrangians containing higher-

derivative interactions. In the absence of higher-derivative terms, the reduced Lagrangian

F is at most quadratic in eI and pI and the Legendre transform (2.12) can easily be car-

ried out. For instance, consider the following Lagrangian in four space-time dimensions
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(we only concentrate on terms quadratic in the field strengths),

√

|g| L0 = −1

4
i
√

|g|
{

NIJ F+
µν

I F+µνJ − N̄IJ F−
µν

I F−µνJ
}

, (2.15)

where F±
µν

I denote the (anti)-selfdual field strengths. In the context of this paper the

tensors F±
rt

I = ±iF±
θϕ

I = 1
2 (Frt

I ± iFθϕ
I) are relevant, where underlined indices refer to

the tangent space. From (2.15), (2.1) and (2.3), we straightforwardly derive the associated

reduced Lagrangian (2.9),

F =
1

4

{

iv1 pI(N̄ − N )IJ pJ

4π v2
− 4iπ v2 eI(N̄ − N )IJ eJ

v1

}

− 1

2
eI(N + N̄ )IJ pJ . (2.16)

It is straightforward to evaluate the entropy function (2.12) in this case,

E = − v1

8π v2
(qI −NIK pK) [(ImN )−1]IJ (qJ − N̄JL pL) , (2.17)

which is indeed compatible with electric/magnetic duality. Upon decomposing into real

matrices, iNIJ = µIJ − iνIJ , this result coincides with the corresponding terms in the

so-called black hole potential discussed in [5, 6], and, more recently, in [14].

2.2 The BPS entropy function

In the previous subsection the symmetry of the near-horizon geometry played a crucial role.

For BPS black holes the supersymmetry enhancement at the horizon is the crucial input

that constrains certain fields at the horizon as well as the near-horizon geometry. Unlike in

the previous case, the number of attractor equations is clear and is in principle given by the

number of independent supermultiplets. However, the precise nature of these constraints

is not always a priori clear. For instance, in the case of N = 2 supergravity, which we will

be dealing with in more detail in subsequent sections, the requirement of supersymmetry

enhancement allows the hypermultiplet scalars to take arbitrary values, while the value of

the vector multiplet scalars is constrained by the black hole charges.

The N = 2 vector multiplets contain complex physical scalar fields which we denote by

XI . In supergravity these fields are defined projectively. At the two-derivative-level, the

action for the vector multiplets is encoded in a holomorphic function F (X). The coupling

to supergravity requires this function to be homogeneous of second degree. Here we follow

the conventions of [11], where the charges and the Lagrangian have different normalizations

than in the previous subsection. However this subsection and the previous one are self-

contained, and the issue of relative normalizations will only play a role in section 3. There

is one issue, however, that needs to be discussed. In principle electric/magnetic duality is a

feature that pertains to the gauge fields. Straightforward application of such a duality to an

N = 2 supersymmetric Lagrangian with vector multiplets, leads to a new Lagrangian that

no longer takes the canonical form in terms of a function F (X). In order to bring it into that

form one must simultaneously apply a field redefinition to the scalar and spinor fields. On

the scalar fields, this redefinition follows from the observation that (XI , FI(X)) transforms

as a sympletic vector analogous to the tensors (Fµν
I , GµνI ) discussed previously. The need
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for this field redefinition clearly follows from the observation that the gauge fields and the

fields XI have a well-defined relation imposed by supersymmetry. When integrating the

rotated version of the FI one obtains the new function F̃ (X̃) in terms of which the new

Lagrangian is encoded. Therefore, in the following, the duality relation of (XI , FI(X)) will

have to be taken into account. We refer to [36, 37] for further details and a convenient list

of formulae.

Upon a suitable uniform field-dependent rescaling of the fields, the BPS attractor

equations take a convenient form2 which is manifestly consistent with electric/magnetic

duality,

PI = 0 , QI = 0 , Υ = −64 , (2.18)

where

PI ≡ pI + i(Y I − Ȳ I) ,

QI ≡ qI + i(FI − F̄I) . (2.19)

Here the Y I are related to the XI by the uniform rescaling and FI denotes the derivative of

F (Y ) with respect to Y I . Furthermore Υ is a complex scalar field equal to the square of the

N = 2 auxiliary field Tab
ij of the Weyl multiplet (upon the uniform rescaling), which is an

anti-selfdual Lorentz tensor. Note that for fields satisfying the attractor equations (2.18),

one easily establishes that

|Z|2 ≡ pIFI − qIY
I , (2.20)

is equal to i(Ȳ IFI −Y I F̄I) and therefore real; Z is sometimes refered to as the ’holomorphic

BPS mass’ and equals the central charge for the vector supermultiplet system. In terms of

the original variables XI it is defined as

Z = exp[K/2] (pIFI(X) − qIX
I) , (2.21)

where

e−K = i (X̄IFI(X) − F̄I(X̄)XI) . (2.22)

At the horizon the variables Y I are defined by

Y I = exp[K/2] Z̄ XI . (2.23)

It is possible to incorporate higher-order derivative interactions involving the square

of the Weyl tensor, by including the Weyl multiplet into the function F , preserving its

homogeneity according to

F (λY, λ2Υ) = λ2 F (Y,Υ) . (2.24)

As it turns out [11] this modification does not change the form of the attractor equa-

tions (2.18).

The BPS attractor equations can also be described by a variational principle based on

an entropy function [7, 12],

Σ(Y, Ȳ , p, q) = F(Y, Ȳ ,Υ, Ῡ) − qI(Y
I + Ȳ I) + pI(FI + F̄I) , (2.25)

2We ignore the hypermultiplets at this stage.
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where pI and qI couple to the corresponding magneto- and electrostatic potentials at the

horizon (cf. [11]) in a way that is consistent with electric/magnetic duality. The quantity

F(Y, Ȳ ,Υ, Ῡ), which will be denoted as the free energy, is defined by

F(Y, Ȳ ,Υ, Ῡ) = −i
(

Ȳ IFI − Y I F̄I

)

− 2i
(

ΥFΥ − ῩF̄Υ

)

, (2.26)

where FΥ = ∂F/∂Υ. Also this expression is compatible with electric/magnetic duality [37].

Varying the entropy function Σ with respect to the Y I , while keeping the charges and Υ

fixed, yields the result,

δΣ = PI δ(FI + F̄I) −QI δ(Y I + Ȳ I) . (2.27)

Here we made use of the homogeneity of the function F (Y,Υ). Under the mild assumption

that the matrix

NIJ = i(F̄IJ − FIJ ), (2.28)

is non-degenerate, it thus follows that stationary points of Σ satisfy the attractor equations.

The macroscopic entropy is equal to the entropy function taken at the attractor point. This

implies that the macroscopic entropy is the Legendre transform of the free energy F . An

explicit calculation yields the entropy formula [9],

Smacro(p, q) = π Σ
∣

∣

∣

attractor
= π

[

|Z|2 − 256 Im FΥ

]

Υ=−64
. (2.29)

Here the first term represents a quarter of the horizon area (in Planck units) so that the

second term defines the deviation from the Bekenstein-Hawking area law. In view of the

homogeneity properties and the fact that Υ takes a fixed value the second term will be

subleading in the limit of large charges. Note, however, that also the area will contain

subleading terms, as it will also depend on Υ. In the absence of Υ-dependent terms,

the homogeneity of the function F (Y ) implies that the area scales quadratically with the

charges.

We should emphasize that also other higher-derivative interactions can be present and

those will not be captured by the function F (Y,Υ). We will return to this issue in section 4.

3. Application to N=2 supergravity

We now study the various entropy functions for N = 2 supergravity systems. Following [25]

we will first determine the form of the entropy function E . Subsequently we will exhibit its

relation to the BPS entropy function Σ. The supergravity Lagrangian consists of various

parts. The most important one concerns the vector multiplets, including the possible effect

from the Weyl multiplet. To this we have to add the Lagrangian for a second compensating

supermultiplet, which we take to be a hypermultiplet. Other choices for the compensating

multiplet (three different choices have been studied in the literature [38]) are, of course,

possible and should yield identical results. Additional hypermultiplets may also be added,

– 8 –
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but play a passive role in the following. The relevant Lagrangian is given by [11],

8π e−1 L = iDµFI DµX̄I − iFI X̄I

(

1

6
R − D

)

− 1

8
iFIJ Yij

I Y Jij − 1

4
iB̂ij FAIY

Iij

+
1

4
iFIJ

(

F−I
ab − 1

4
X̄ITab

ijεij

)(

F−Jab − 1

4
X̄JT ijabεij

)

−1

8
iFI

(

F+I
ab − 1

4
XITabijε

ij

)

T ab
ijε

ij +
1

2
iF̂−ab FAI

(

F−I
ab − 1

4
X̄ITab

ijεij

)

+
1

2
iFAĈ − 1

8
iFAA(εikεjlB̂ijB̂kl − 2F̂−

abF̂
−ab) − 1

32
iF (Tabijε

ij)2 + h.c.

−1

2
εij Ω̄αβ DµAi

α DµAj
β + χ

(

1

6
R +

1

2
D

)

, (3.1)

where the last two terms pertain to the hypermultiplets. This expression is consistent

with electric/magnetic duality upon use of the field equations for the vector fields and

the auxiliary fields Yij
I [37]. The quantities Ai

α(φ) denote the hypermultiplet sections,

and χ denotes the hyper-Kähler potential. We refrain from giving explicit definitions at

this point and refer the reader to [39]. The covariant derivatives involve all the bosonic

gauge fields, such as the Lorentz spin connection and the gauge fields associated with

Weyl rescalings and the SU(2) × U(1) R-symmetry. The quantities XI , F±
ab

I and Yij
I

denote the bosonic components of the vector multiplets, namely, the complex scalars,

the (anti-)selfdual field strengths (defined with tangent-space indices) and the auxiliary

fields, respectively. As we already explained, the anti-selfdual tensor field Tab
ij belongs

to the Weyl multiplet and defines the lowest component of a scalar chiral multiplet, Â =

(Tab
ijεij)

2, which, upon rescaling yields the field Υ introduced earlier. Apart from Tab
ij ,

the bosonic components of the Weyl multiplet comprise the Riemann curvature, the field

strengths of the SU(2) × U(1) gauge fields associated with R-symmetry, and a real scalar

field denoted by D. The quantities B̂ij, F̂±
ab and Ĉ denote the other bosonic components of

the scalar chiral multiplet constructed from the Weyl multiplet. For the exact expressions

we refer to [11].

The fact that we extracted a uniform factor of 8π from the Lagrangian and the fact

that the charges used in [11] differ from the charges introduced in (2.1) and in (2.6), implies

that the charges pI and qI as defined in subsection 2.1 should be changed according to:

pI → 4π pI and qI → 1
2qI . This rescaling has been carried out in all subsequent formulae.

The next step is to exploit the spherical symmetry and derive the reduced La-

grangian (2.9). For the space-time metric and the field strengths this was already done

in (2.1). Let us first concentrate on the auxiliary field Tab
ij , which plays an important role

in this paper. In a spherically symmetric configuration this field can be expressed in terms

of a single complex scalar w. Following [25] we define,

Trt
ijεij = −iTθϕ

ijεij = w , (3.2)

where underlined indices denote tangent-space indices. Consequently we have Â = −4w2.

We will have to do the same for all other fields, but we will restrict ourselves to a restricted
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class of solutions by putting some of the fields to zero. Namely, at this stage we will assume

the following consistent set of constraints,

R(V)µν
i
j = R(A)µν = DµXI = DµAi

α = 0 , (3.3)

where the first two tensors denote the R-symmetry field strengths. These constraints are

weaker than the ones imposed in [25], and they are in accord with those that follow from

requiring supersymmetry enhancement at the horizon [11]. It is not unlikely that, if one

were to relax these constraints in the evaluation of the reduced Lagrangian, most of them

would still emerge in the form of attractor equations at the end. We will not pursue this

question in any detail.

Since B̂ij is proportional to R(V)µν
i
j , this field can thus be ignored as well. Fur-

thermore the auxiliary fields Yij
I can be dropped as a result of their equations of motion.

Subject to all these conditions the relevant expressions for Ĉ and F̂µν are as follows,

F̂−ab = −16R(M)cd
ab T klcd εkl ,

Ĉ = 64R(M)−cd
ab R(M)−cd

ab − 32T ab ij Da DcTcb ij , (3.4)

where R is a modification of the Riemann tensor and the derivatives are superconformally

invariant [11]. Under the same assumptions the Lagrangian (3.1) reduces to L = L1 + L2,

with

8π e−1 L1 =

[

1

4
iFIJF−I

ab

(

F−Jab − 1

2
X̄JT ijabεij

)

−1

8
iFI F+I

ab T ab
ijε

ij +
1

2
iF̂−ab FAI F−I

ab + h.c.

]

,

8π e−1 L2 = e−K

(

D − 1

6
R

)

+
1

2
χ

(

D +
1

3
R

)

− 1

32

[

i

(

F − FIX
I +

1

2
F̄IJXIXJ

)

(Tabijε
ij)2 + h.c.

]

+
1

2

[

iFAĈ +
1

2
iFAA F̂−

abF̂
−ab − 1

4
iF̂−ab FAIX̄

ITab
ijεij + h.c.

]

. (3.5)

In the AdS2 background we are left with a restricted number of field variables that are

all constant, namely, v1, v2, w, D, eI , XI and Ai
α. Note, however, that the dependence

on the fields Ai
α is entirely contained in the hyperkähler potential χ. Our next task is

to evaluate the reduced Lagrangian as a function of these variables. Before doing so,

we should stress that the above Lagrangian (3.1) was derived from a superconformally

invariant expression. As a result the bosonic quantities are still subject to certain invariance

transformations. One of them is scale invariance with respect to a complex parameter λ,

v1,2 → |λ|−2v1,2 , w → λ̄w , D → |λ|2D , XI → λ̄XI , χ → |λ|2χ . (3.6)

All other fields (as well as the charges) are invariant under these scale transformation.

In addition the hypermultiplet sections are subject to rigid SU(2) transformations. The
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reduced Lagrangian and the entropy function should be invariant under these transforma-

tions. Therefore it will be useful to express the entropy function (2.12) computed from the

Lagrangian (3.1) in terms of a set of scale invariant variables. We choose the following set

of such variables,

Y I =
1

4
v2 w̄ XI , Υ =

1

16
v2
2 w̄2 Â = −1

4
v2
2 |w|4 , U =

v1

v2
,

D̃ = v2 D +
2

3
(U−1 − 1) , χ̃ = v2 χ . (3.7)

Observe that Υ is real and negative, and that
√
−Υ and U are real and positive. Note also

that the hypermultiplets contribute only through the hyperkähler potential χ.

We now compute the quantities appearing in (3.5) for the near-horizon background

specified in terms of the parameters given above. We obtain (indices i, j refer to the AdS2

coordinates r, t, whereas indices α, β refer to S2 coordinates θ, ϕ),

R = 2
(

v−1
1 − v−1

2

)

,

fi
j =

[

1

2
v−1
1 − 1

4

(

D +
1

3
R

)

− 1

32
|w|2

]

δi
j ,

fα
β =

[

− 1

2
v−1
2 − 1

4

(

D +
1

3
R

)

+
1

32
|w|2

]

δα
β ,

R(M)ij
kl =

(

D +
1

3
R

)

δij
kl ,

R(M)αβ
γδ =

(

D +
1

3
R

)

δαβ
γδ ,

R(M)iα
jβ =

1

2

(

D − 1

6
R

)

δj
i δβ

α ,

Â = −4w2 ,

F̂−
rt = −iF̂−

θϕ = −16w

(

D +
1

3
R

)

,

Ĉ = 192D2 +
32

3
R2 − 16|w|2(v−1

1 + v−1
2 ) + 2|w|4 . (3.8)

With these results we obtain the following contributions to the reduced Lagrangian corre-

sponding to L1 and L2 of (3.5),

F1 =
1

8
NIJ

[

U−1eIeJ − UpIpJ
]

− 1

4
(FIJ + F̄IJ)eIpJ

+
1

2
ieI

[

FI + FIJ Ȳ J + 8FIΥ

√
−ΥD̃ − h.c.

]

−1

2
UpI

[

FI − FIJ Ȳ J − 8FIΥ

√
−ΥD̃ + h.c.

]

,

F2 =
4i√
−Υ

(Ȳ IFI − Y I F̄I)(D̃U + U − 1) +
1

4
χ̃D̃U

+iU
[

F − Y IFI − 2ΥFΥ +
1

2
F̄IJY IY J − h.c.

]

+i(FΥ − F̄Υ)
[

48UD̃2 + 64D̃(U − 1) + 32(U + U−1 − 2) − 8(1 + U)
√
−Υ

]

+32iU
[

D̃2ΥFΥΥ − 1

4
D̃ Ȳ IFIΥ

√
−Υ − h.c.

]

. (3.9)
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Observe that these results refer to a general function F (Y,Υ). Because of the scale in-

variance, there is no longer a dependence on the field w. Furthermore we used the defini-

tion (2.28).

The entropy function can be written as

E = E1 + E2 , (3.10)

where E1 = −F1 − 1
2eIqI and E2 = −F2. Note that the factor 1/2 in E1 is due to the

rescaling discussed earlier. When expressed in terms of pI and qI , E1 reads,

E1 =
1

2
U Σ(Y, Ȳ , p, q) +

1

2
U N IJ(QI − FIKPK) (QJ − F̄JLPL)

+iU
[

ΥFΥ − 1

2
Y IFI +

1

2
F̄IJY IY J − h.c.

]

+8iUD̃
√
−Υ

[

FIΥN IJ(QJ − F̄JKPK) − h.c.
]

−8iUD̃
√
−Υ

[

Ȳ IFIΥ − h.c.
]

+32U D̃2Υ N IJ(FIΥ − F̄IΥ)(FJΥ − F̄JΥ) , (3.11)

where QI , PI , and Σ were defined already in (2.19) and (2.25), respectively. Combining

this result with E2 there are some crucial rearrangements and the result is an entropy

function that is consistent with electric/magnetic duality,

E =
1

2
U Σ(Y, Ȳ , p, q) +

1

2
U N IJ(QI − FIKPK) (QJ − F̄JLPL)

+8iUD̃
√
−Υ

[

FIΥN IJ(QJ − F̄JKPK) − h.c.
]

− 4i√
−Υ

(Ȳ IFI − Y I F̄I)(D̃U + U − 1) − 1

4
χ̃D̃U

−32iUD̃2
[

ΥFΥΥ +
1

2
iΥ N IJ(FIΥ − F̄IΥ)(FJΥ − F̄JΥ) − h.c.

]

−i(FΥ − F̄Υ)
[

48UD̃2 + 64D̃(U − 1) − 2UΥ + 32(U + U−1 − 2) − 8(1 + U)
√
−Υ

]

,

(3.12)

where we used the homogeneity of the function F (Y,Υ), which implies

F (Y,Υ) =
1

2
Y IFI(Y,Υ) + ΥFΥ(Y,Υ) . (3.13)

To confirm that the entropy transforms as a function under electric-magnetic duality, one

may make use of the results of [37]. Subsequently we require that E be stationary with

respect to variations of D̃ and χ̃. This imposes the conditions (we assume U 6= 0),

D̃ = 0 ,

χ̃ = − 16i√
−Υ

(Ȳ IFI − Y I F̄I) − 256i(FΥ − F̄Υ)(1 − U−1)

+32i
√
−Υ

[

FIΥN IJ(QJ − F̄JKPK) − h.c.
]

. (3.14)
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Upon substitution of these equations into (3.12), the expression for E simplifies considerably

and we obtain,

E(Y, Ȳ ,Υ, U) =
1

2
U Σ(Y, Ȳ , p, q) +

1

2
U N IJ(QI − FIKPK) (QJ − F̄JLPL)

− 4i√
−Υ

(Ȳ IFI − Y I F̄I)(U − 1)

−i(FΥ − F̄Υ)
[

− 2UΥ + 32(U + U−1 − 2) − 8(1 + U)
√
−Υ

]

. (3.15)

Although this result is written in a different form and is obtained in a slightly different

setting, it is in accord with the result derived in [25]. The entropy function (3.15) depends

on the variables U , Υ and Y I whose values will be determined at the attractor values where

E is stationary. The macroscopic entropy is proportional to the entropy function taken at

the attractor values,

Smacro(p, q) = 2πE
∣

∣

∣

attractor
. (3.16)

In the following, we will discuss the extremization of E with respect to these variables,

first in the absence of R2-terms, and then for BPS black holes in the presence of R2-terms.

Finally we will consider the general case.

3.1 Variational equations without R2-interactions

In the absence of R2-interactions, the function F does not depend on Υ, so that the entropy

function (3.15) reduces to

E(Y, Ȳ ,Υ, U) =
1

2
U Σ(Y, Ȳ , p, q) +

1

2
U N IJ(QI − FIKPK) (QJ − F̄JLPL)

− 4i√
−Υ

(Ȳ IFI − Y I F̄I)(U − 1) . (3.17)

Varying (3.17) with respect to Υ yields

U = 1 . (3.18)

The latter implies that the Ricci scalar of the four-dimensional space-time vanishes. Here

we assumed that
(

Ȳ IFI − Y I F̄I

)

is non-vanishing, which is required so that Newton’s

constant remains finite. Varying with respect to U yields,

Σ +
(

QI − FIK PK
)

N IJ
(

QJ − F̄JL PL
)

− 8i√
−Υ

(

Ȳ IFI − Y I F̄I

)

= 0 , (3.19)

which determines the value of Υ in terms of the Y I . This relation is not surprising. When

the function F depends exclusively on the Y I , the quantity Υ is related to an auxiliary

field in the original Lagrangian whose field equation is algebraic and (3.19) is a direct

consequence of this equation.

Hence we are now dealing with an effective entropy function

E(Y, Ȳ ,Υ, 1) =
1

2
Σ(Y, Ȳ , p, q) +

1

2
N IJ(QI − FIKPK) (QJ − F̄JLPL) , (3.20)
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which is independent of Υ, whose value is simply determined by (3.19). Note that (3.20)

is homogeneous under uniform rescalings of the charges qI and pI and the variables Y I .

This implies that the entropy will be proportional the the square of the charges. Under

infinitesimal changes of Y I and Ȳ I the entropy function (3.20) changes according to

δE = PI δ(FI + F̄I) −QI δ(Y I + Ȳ I)

+
1

2
i
(

QK − F̄KM PM
)

NKI δFIJ NJL
(

QL − F̄LN PN
)

−1

2
i
(

QK − FKM PM
)

NKI δF̄IJ NJL
(

QL − FLN PN
)

= 0 , (3.21)

where δFI = FIJ δY J and δFIJ = FIJK δY K . This equation determines the horizon

value of the Y I in terms of the black hole charges (pI , qI). Because the function F (Y )

is homogeneous of second degree, we have FIJKY K = 0. Using this relation one deduces

from (3.21) that
(

QJ − FJK PK
)

Y J = 0, which is equivalent to

i(Ȳ IFI − Y I F̄I) = pIFI − qIY
I . (3.22)

Therefore, at the attractor point, we have

Σ = i(Ȳ IFI − Y I F̄I) . (3.23)

Inserting this result into (3.19) yields

√
−Υ =

8Σ

Σ + N IJ (QI − FIK PK)
(

QJ − F̄JL PL
) , (3.24)

which gives the value of Υ in terms of the attractor values of the Y I . Using (3.24) we can

write the entropy as,

Smacro(p, q) = 2π E
∣

∣

∣

attractor
=

8π Σ√
−Υ

∣

∣

∣

attractor
. (3.25)

Observe that, for a BPS black hole, QI = PJ = 0 and Υ = −64, so that Smacro =

π Σ|attractor in accord with (2.29).

The entropy function (3.20) can be written as

E = −qI(Y
I + Ȳ I) + pI(FI + F̄I) +

1

2
N IJ(qI − FIKpK)(qJ − F̄JLpL) + NIJY I Ȳ J , (3.26)

where we used the homogeneity of the function F (Y ). Expressing the Y I according to (2.23)

(which is consistent with the first equation of (3.7), as we will show below) and using the

definitions (2.21) and (2.22), we write (3.26) as follows,

E =
1

2

(

N IJ + 2eKXIX̄J
)

(qI − FIKpK)(qJ − F̄JLpL) , (3.27)

where FIJ is now the second derivative of F (X) with respect to XI and XJ . Notice that

this expression is invariant under uniform rescalings of the XI by a complex number, which

is a reflection of the complex scale invariance noted above (3.6).
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The quantities XI can now be expressed in terms of the physical complex scalars be-

longing to the vector supermultiplets, which we denote by zA, where the index A takes

n values, one less than the number of vector fields. These scalars parametrize the special

Kähler target space. Subsequently we parametrize the XI as a projective holomorphic sec-

tion (i.e. up to multiplication by a complex factor) in terms of the holomorphic coordinates

zA. We then use the identity (see the second reference in [37]),

N IJ = eK(z,z̄)
[

gAB̄ (∂A + ∂AK(z, z̄)) XI(z) (∂B̄ + ∂B̄K(z, z̄)) X̄J (z̄) − XI(z) X̄J (z̄)
]

,

(3.28)

where gAB̄ is the inverse metric of the special Kähler space, and write the entropy func-

tion (3.27) in the well-known form [3, 5],

E =
1

2

[

|Z(z, z̄)|2 + gAB̄(z, z̄)DAZ(z, z̄)DB̄Z̄(z, z̄)
]

, (3.29)

where DAZ = (∂A + 1
2∂AK)Z. This agreement was also established in [40]. As mentioned

above, in order to bring the entropy function into the form (3.29), we expressed the Y I

according to (2.23), which is consistent with the definition given in (3.7) by virtue of (3.22).

3.2 BPS black holes with R2-interactions

In the presence of R2 interactions, the horizon values of U and Υ for extremal BPS black

holes are U = 1 and Υ = −64 [11]. Inserting these values into (3.15) results in

E(Y, Ȳ ,−64, 1) =
1

2
Σ(Y, Ȳ , p, q) +

1

2
N IJ

(

QI − FIK PK
) (

QJ − F̄JL PL
)

. (3.30)

Observe that the variational principle based on (3.30) is only consistent with the one based

on (3.15) provided that (3.30) is supplemented by the extremization equations for U and

for Υ given by (3.31) and (3.34) below. For BPS solutions it can be readily checked that

the latter are indeed satisfied.

The form of the BPS entropy function (3.30) is closely related to the one given in [7, 12],

which consists of the first term in (3.30). As discussed in section 2.2, the BPS attractor

equations can be derived by a variational principle based on Σ. The quantity Σ was also

used in [12] to construct a duality invariant version of the OSV integral which attempts

to express microscopic state degeneracies in terms of macroscopic data [41]. In [12] it

was furthermore shown that, for large BPS black holes, the evaluation in saddle-point ap-

proximation of the modified OSV integral precisely yields the macroscopic entropy (2.29).

This result was established by computing the second variation of Σ which, upon impos-

ing the BPS attractor equations QI = PJ = 0, equals δ2Σ = 2NIJ δY I δȲ J . Instead

of constructing a duality invariant version of the OSV integral based on Σ, one can also

consider constructing such an integral based on (3.30). The presence of the second term

in (3.30) will, however, not affect the evaluation of this integral in saddle-point approx-

imation (for large black holes), since, when evaluating the second variation of E on the

BPS attractor, the second term contributes the same amount as the first term, so that

δ2E = δ2Σ = 2NIJ δY I δȲ J .
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3.3 Non-BPS black holes with R2-interactions

In the following, we consider extremal black holes in the presence of R2-terms and we

compute the extremization equations for the fields U,Υ and Y I following from the entropy

function (3.15).

Varying with respect to U gives

Σ +
(

QI − FIK PK
)

N IJ
(

QJ − F̄JL PL
)

− 8i√
−Υ

(Ȳ IFI − Y I F̄I)

−i(FΥ − F̄Υ)
[

− 4Υ + 64(1 − U−2) − 16
√
−Υ

]

= 0 . (3.31)

To verify the consistency with the analysis of the previous subsection (see (3.30)), one

may verify that the BPS conditions PI = QI = 0 and Υ = −64 leaves only the term

proportional to (1 − U−2)(FΥ − F̄Υ) which vanishes as a result of U = 1.

Subsequently we consider the variation of the entropy function (3.15) with respect to

arbitrary variations of the fields Y I and Υ and their complex conjugates. Denoting this

variation by δ = δY I∂/∂Y I + δȲ I∂/∂Ȳ I + δΥ∂/∂Υ + δῩ∂/∂Ῡ, we derive the following

result,

δE = U
[

PI δ(FI + F̄I) −QI δ(Y I + Ȳ I)
]

+
1

2
iU

[

(QK − F̄KM PM )NKI δFIJ NJL(QL − F̄LN PN ) − h.c.
]

−4i(−Υ)−1/2 (U − 1)
[

(FI − F̄I) δ(Y I + Ȳ I) − (Y I − Ȳ I) δ(FI + F̄I)
]

+i
[

2U Υ − 32(U + U−1 − 2) + 16
√
−Υ

]

δ(FΥ − F̄Υ)

+iU
[

δΥ FΥIN
IJ(QJ − F̄JL PL) − h.c.

]

−2i(−Υ)−3/2 (U − 1) (Ȳ IFI − Y I F̄I) δΥ

+i(FΥ − F̄Υ)
[

U − 4(−Υ)−1/2 (1 + U)
]

δΥ , (3.32)

where we took into account that the variable Υ is real.

Restricting ourselves to variations δY I , the above result leads to the following attractor

equations,

U
(

QI − FIJ PJ
)

− 1

2
iU

(

QK − F̄KM PM
)

NKP FPIQ NQL
(

QL − F̄LN PN
)

+4i(−Υ)−1/2(U − 1)
[

FI − F̄I − FIJ(Y J − Ȳ J)
]

−i
[

2U Υ − 32(U + U−1 − 2) + 16
√
−Υ

]

FΥI = 0 . (3.33)

Upon variation of the entropy function with respect to Υ the resulting equation is

only covariant with respect to electric/magnetic duality provided the attractor equa-

tions (3.33) are satisfied. However, one can apply a mixed derivative of the form

δ = ∂/∂Υ + iFΥI N IJ ∂/∂Y I , which has the property that when acting on a symplectic

function G(Y,Υ), then also δG transforms as a symplectic function [37]. An alternative

derivation is based on δ = Y I∂/∂Y I + Ȳ I∂/∂Ȳ I + 2Υ∂/∂Υ, using that Υ is real so that
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∂/∂Υ acts on both Υ and Ῡ. Exploiting the homogeneity properties of the various quan-

tities involved, one derives the equation,

UΣ − i(Ȳ IFI − Y I F̄I)
[

U + 4(−Υ)−1/2(U − 1)
]

+2iU
[

ΥFIΥN IJ(QJ − F̄JKPK) − h.c.
]

+2i(FΥ − F̄Υ)
[

2UΥ + 4
√
−Υ(1 + U)

]

= 0 . (3.34)

Note that the above equations (3.33) and (3.34) are indeed satisfied in the BPS case. They

are also consistent with electric/magnetic duality.

4. Discussion

In this paper we studied the entropy function for static extremal black holes using the

proposal of [13] and we exhibited its relation with the entropy function for BPS black holes

in N = 2 supergravity, derived in [12]. For BPS black holes these two entropy functions

lead to the same results for the attractor equations and the entropy. This result even

persists in the semi-classical approximation when evaluating an inverse Laplace integral of

the OSV-type [12].

In this final section we would like to discuss two more issues. The first one deals with

the presence of higher-derivative couplings other than those introduced in section 3. The

latter are associated with interactions quadratic in the Riemann tensor and are encoded

by the Υ dependence in the holomorphic function F (Y,Υ). Take, for instance, the simple

example based on

F (Y,Υ) = −Y 1Y 2Y 3

Y 0
− C

Y 1

Y 0
Υ . (4.1)

For BPS black holes the attractor equations can be solved for generic charges [10], but

solutions only are only consistent when the charges satisfy certain relations in which case

one obtains an explicit expression for the entropy. These relations are not satisfied when

the black hole carries the following non-vanishing charges,

q0 = p1 = Q , p2 = p3 = P , (4.2)

with PQ positive. However, in that case [25], non-supersymmetric black holes are possible

and one can attempt to solve the equations (3.31), (3.33) and (3.34). Unfortunately explicit

solutions do not exist and one has to resort to perturbation theory in the constant C. To

first order in C, the attractor values read,

Y 0 = 1
4P

(

1 + 96C P−2
)

,

Y 1 = 1
4 iQ

(

1 + 40C P−2
)

,

Y 2 = Y 3 = 1
4 iP

(

1 + 16C P−2
)

,

U = 1 − 16C P−2 ,

Υ = −4 .

(4.3)

In this order of perturbation theory the corresponding entropy (3.16) is computed by

substituting the tree-level values for U , Υ and the Y I into the entropy function (3.15).

The result reads,

Smacro = 2πPQ
(

1 + 40C P−2
)

. (4.4)

– 17 –



J
H
E
P
0
3
(
2
0
0
7
)
0
8
5

As was argued in [25] this is not the expected value from microstate counting [42, 43], which

requires a different numerical factor in front of the CP−2 correction term. However, one has

to take into account that other higher-derivative interactions may be present, associated

with matter multiplets instead, which would in principle contribute to the entropy. Such

higher-derivative interactions have been studied for N = 2 tensor supermultiplets, and,

indeed, it turns out that they lead to entropy corrections for non-supersymmetric black

holes [44]. For BPS black holes, however, these corrections vanish. Although a comprehen-

sive treatment of higher-derivative interactions is yet to be given for N = 2 supergravity,

it seems that this result is generic.

These observations are in line with more recent findings [27, 28] based on heterotic

string α′-corrections encoded in a higher-derivative effective action in higher dimensions,

which lead to additional matter-coupled higher-derivative interactions in four dimensions.

When these are taken into account, the matching of the macroscopic entropy with the

microscopic result is established [28].

A second topic concerns possible non-holomorphic corrections to the results presented

in section 3. The Lagrangian (3.1) is based on a holomorphic homogeneous function

F (X, Â), which subsequently is written in terms of the variables Y I and Υ, and corre-

sponds to the so-called effective Wilsonian action. This action is based on integrating

out the massive degrees of freedom and it describes the correct physics for energy scales

between appropriately chosen infrared and ultraviolet cutoffs. In order to preserve phys-

ical symmetries non-holomorphic contributions should be included associated with inte-

grating out massless degrees of freedom. In the special case of heterotic black holes in

N = 4 supersymmetric compactifications, the requirement of explicit S-duality invariance

of the entropy and the attractor equations allows one to determine the contribution from

these non-holomorphic corrections, as was first demonstrated in [10] for BPS black holes.

In [45, 12] it was established that non-holomorphic corrections to the BPS entropy func-

tion (2.25) can be encoded into a real function Ω(Y, Ȳ ,Υ, Ῡ) which is homogeneous of

second degree. The modifications to the entropy function are then effected by substitut-

ing F (Y,Υ) → F (Y,Υ) + 2iΩ(Y, Ȳ ,Υ, Ῡ). There are good reasons to expect that this

same substitution should be applied to the more general entropy function (3.15). Indeed,

when applying this ansatz to heterotic black holes in N = 4 supersymmetric compactifi-

cations, the resulting entropy function is S-duality invariant and can be used to analyze

non-supersymmetric extremal black holes in the same way as was done for the BPS black

holes. In that case ∂Υ(F + 2iΩ) has to be an S-duality invariant function.

Unlike the BPS entropy function (2.25), the entropy function (3.15) was derived di-

rectly from an effective action. Hence one may reconsider the relevant parts of this effective

action given in (3.5), in order to see whether additional changes beyond the substitution

F (Y,Υ) → F (Y,Υ) + 2iΩ(Y, Ȳ ,Υ, Ῡ) are needed in order to reproduce the conjectured

non-holomorphic modification of the entropy function. As it turns out only one minor

change is required. Namely, one has to replace the coefficient (F −FIX
I + 1

2 F̄IJXIXJ) of

the (Tabijε
ij)2 term in L2 by (ÂFA − 1

2FIX
I + 1

2 F̄IJXIXJ). For a holomorphic function

F (X, Â) these two expressions coincide by virtue of (3.13), but when the non-holomorphic

function Ω(X, X̄, Â,
¯̂
A) is included, the two expressions will be different. Of course, the
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presence of non-holomorphic terms will affect the supersymmetry of the original action.

Since the non-holomorphic corrections are expected to capture the contributions of the

massless modes, one expects that their supersymmetrization will contain non-local inter-

actions. The construction of such a supersymmetric action is a challenge.
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